
Stats Review for Data Science

Notes Prepared by: Uras Demir, Ph.D.

[Work in Progress]

February 10, 2025



Contents

1 Types of Data 5

2 Statistical Measures of Location 6

3 Descriptive Measures of Variability 7

4 Visualizations of Distribution 9

5 Correlation and Correlation Tests 10
5.1 Pearson Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.2 Spearman’s Rank Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.3 Kendall’s Tau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.4 Point-Biserial Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.5 Partial Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Sampling Distributions 14
6.1 Sample Statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.2 Sampling Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.3 Bias (Reliability vs. Validity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.4 Standard Error of the Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.5 Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.6 Jackknifing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.7 Confidence Interval (CI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7 Normal Distribution 17
7.1 Standard Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.2 Probability Density Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.3 Z-Score (Standardization) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.4 Q-Q Plot for Normality Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

8 Student’s t-distribution 18
8.1 Difference from the Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8.2 Degrees of Freedom (df) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8.3 t-Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8.4 Confidence Interval (CI) Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

9 Binomial Distribution 19
9.1 Definition and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
9.2 Binomial Trials and Success Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
9.3 Mean and Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
9.4 Normal Approximation to the Binomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

10 Poisson Distribution 20
10.1 Definition and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
10.2 Poisson Process and Rate Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

11 Hypothesis Testing 21
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
11.2 Key Concepts in Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
11.3 Understanding Type I and Type II Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
11.4 One-Tailed vs. Two-Tailed Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
11.5 One-Way vs. Two-Way Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
11.6 Steps in Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
11.7 Determining Statistical Power and Sample Size . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1



12 A/B Testing using Two-Proportion Z Test 23
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
12.2 Hypothesis Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
12.3 Example: Testing Click-Through Rate (CTR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
12.4 Statistical Test: Two-Proportion Z-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
12.5 Interpreting Results: One-Tailed vs. Two-Tailed Tests . . . . . . . . . . . . . . . . . . . . . . 24
12.6 Choosing Between One-Tailed and Two-Tailed Tests . . . . . . . . . . . . . . . . . . . . . . . 24
12.7 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

13 Permutation Test 25
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
13.2 When to Use a Permutation Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
13.3 Steps in a Permutation Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
13.4 Example: Testing a New Drug vs. Placebo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

14 t-Test 26
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
14.2 Assumptions of the t-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

15 One-Sample t-Test 27
15.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
15.2 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
15.3 Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
15.4 Example: Average Coffee Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

16 Independent (Two-Sample) t-Test (Student’s t-Test) 28
16.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
16.2 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
16.3 Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
16.4 Example: Effect of a New Teaching Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

17 Welch’s t-Test 29
17.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
17.2 Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
17.3 Example: Salaries in Different Industries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

18 Paired t-Test 30
18.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
18.2 Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
18.3 Example: Effect of a Workout Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

19 Analysis of Variance (ANOVA) 32
19.1 Key Concepts in ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
19.2 Example: Examining Exam Scores Across Three Teaching Methods . . . . . . . . . . . . . . . 33
19.3 Post-Hoc Analysis: Tukey’s HSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

20 Two-Way Analysis of Variance (ANOVA) 34
20.1 Key Concepts in Two-Way ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
20.2 Example: Examining Exam Scores Based on Teaching Method and Study Environment . . . 34
20.3 Post-Hoc Analysis: Tukey’s HSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2



21 Chi-Square Test 36
21.1 Key Concepts in Chi-Square Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
21.2 Chi-Square Test for Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
21.3 Example: Examining the Relationship Between Gender and Product Preference . . . . . . . . 37
21.4 Chi-Square Goodness-of-Fit Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

22 Simple Linear Regression 39
22.1 Key Concepts in Simple Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
22.2 Regression Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
22.3 Estimating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
22.4 Example: Predicting Exam Scores Based on Study Hours . . . . . . . . . . . . . . . . . . . . 39
22.5 Interpreting the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
22.6 Goodness of Fit: R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
22.7 Significance Testing: t-Test for β1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
22.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

23 Multiple Linear Regression 42
23.1 Regression Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
23.2 Estimating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
23.3 Goodness of Fit: R2 and Adjusted R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
23.4 Example: Predicting House Prices Based on Size and Bedrooms . . . . . . . . . . . . . . . . . 43
23.5 Hypothesis Testing for Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
23.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

24 Interpreting Regression Coefficients for Different Data Types 44
24.1 Binary Variables (0/1, Dummy Variables) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
24.2 Categorical (Nominal) Variables with Dummy Coding . . . . . . . . . . . . . . . . . . . . . . 44
24.3 Ordinal Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
24.4 Discrete Variables (Count Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
24.5 Continuous Variables (Interval and Ratio) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
24.6 Interaction Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
24.7 Comprehensive Example: Interpreting Regression Coefficients in a Realistic Model . . . . . . 45
24.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

25 Robust Standard Errors 47
25.1 Why Use Robust Standard Errors? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
25.2 Types of Robust Standard Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

25.2.1 White-Huber Robust Standard Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
25.2.2 Clustered Standard Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
25.2.3 Heteroscedasticity and Autocorrelation Consistent (HAC) Standard Errors . . . . . . 47

25.3 When to Use Robust Standard Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
25.4 Example: Impact of Education and Experience on Salary . . . . . . . . . . . . . . . . . . . . 48
25.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

26 Model Fit, Diagnostics, and Selection 49
26.1 Residual Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
26.2 Goodness-of-Fit Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

26.2.1 R-Squared (R2) and Adjusted R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
26.2.2 Pseudo-R2 for Generalized Linear Models (GLMs) . . . . . . . . . . . . . . . . . . . . 49

26.3 Model Significance and Error Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
26.3.1 F-Test for Overall Model Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
26.3.2 Root Mean Squared Error (RMSE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
26.3.3 Residual Standard Error (RSE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

26.4 Model Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
26.4.1 Akaike Information Criterion (AIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3



26.4.2 Bayesian Information Criterion (BIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
26.4.3 Log-Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

26.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

27 Lasso and Ridge Regression 52
27.1 Lasso Regression (Least Absolute Shrinkage and Selection Operator) . . . . . . . . . . . . . . 52

27.1.1 Definition and Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
27.1.2 Interpretation of Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
27.1.3 Example: Predicting House Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
27.1.4 When to Use Lasso Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

27.2 Ridge Regression (Tikhonov Regularization) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
27.2.1 Definition and Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
27.2.2 Interpretation of Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
27.2.3 Example: Predicting House Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
27.2.4 When to Use Ridge Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

27.3 Comparison: Lasso vs. Ridge Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
27.4 Elastic Net: Combining Lasso and Ridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
27.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

28 Hierarchical Linear Models (HLM) 55
28.1 Why Use Hierarchical Models? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
28.2 Fixed Effects Model (FE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
28.3 Random Effects Model (RE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
28.4 Fixed vs. Random Effects: The Hausman Test . . . . . . . . . . . . . . . . . . . . . . . . . . 56
28.5 Diagnostics for Panel Data Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

28.5.1 Pesaran CD Test (Cross-Sectional Dependence) . . . . . . . . . . . . . . . . . . . . . . 56
28.5.2 Breusch-Pagan LM Test (Random Effects vs. OLS) . . . . . . . . . . . . . . . . . . . 56
28.5.3 Intraclass Correlation Coefficient (ICC) . . . . . . . . . . . . . . . . . . . . . . . . . . 56

28.6 Comparison of Fixed Effects and Random Effects . . . . . . . . . . . . . . . . . . . . . . . . . 57
28.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

29 Generalized Linear Models (GLMs) 58
29.1 Why Use GLMs? How Are They Different from Linear Models? . . . . . . . . . . . . . . . . . 58
29.2 General Structure of a GLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
29.3 Comparison: GLMs vs. Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
29.4 When to Use GLMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
29.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

30 Logistic Regression 60
30.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
30.2 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
30.3 Interpretation of Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
30.4 Model Fitting: Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 60
30.5 Model Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

30.5.1 Pseudo-R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
30.5.2 Classification Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

30.6 Diagnostics and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
30.6.1 Multicollinearity (VIF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
30.6.2 Linearity in Log-Odds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
30.6.3 Hosmer-Lemeshow Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

30.7 ROC Curve and AUC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
30.7.1 Receiver Operating Characteristic (ROC) Curve . . . . . . . . . . . . . . . . . . . . . 62
30.7.2 Area Under the Curve (AUC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

30.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4



1 Types of Data

Table 1: Types of Data

Data Type Explanation Statistics to Compute Examples

Binary A subtype of categorical data
with only two possible values (0
or 1, True/False).

Proportions, logistic regression,
chi-square tests.

Pass/Fail, Yes/No,
Male/Female.

Categorical
(Nominal)

Data divided into distinct groups
or categories without intrinsic or-
der.

Mode, frequencies, chi-square
tests.

Eye color, types of fruits, city
names.

Ordinal Categorical data with a meaning-
ful order, but differences between
levels are not measurable.

Median, percentiles, Spearman’s
rank correlation.

Satisfaction levels
(Low/Medium/High), education
levels.

Discrete Countable quantities, often inte-
gers, with a finite or countably
infinite range of values.

Counts, frequencies, mode, Pois-
son regression.

Number of students, cars in a
parking lot.

Continuous (In-
terval)

Measurable quantities with no
true zero. Differences are mean-
ingful, but ratios are not.

Mean, standard deviation, corre-
lation.

Temperature (°C), calendar
years.

Continuous (Ra-
tio)

Measurable quantities with a
true zero. Both differences and
ratios are meaningful.

Mean, standard deviation, geo-
metric mean.

Weight (kg), height (cm), income
($).
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2 Statistical Measures of Location

Table 2: Statistical Measures of Location

Measure Explanation Formula Example (Dataset: {1, 1,
3, 5, 5, 15})

When to Use

Mode The most frequently occur-
ring value(s) in the dataset.

N/A (find the value with the
highest frequency).

Mode = 1, 5 (both appear
twice).

Use when identifying the
most common category or
value is important, such as for
nominal data (e.g., survey re-
sponses).

Median The middle value when the
dataset is ordered. If even, it
is the average of the two mid-
dle values.

Median =
xn

2
+xn

2
+1

2 , for n
even.

Ordered: {1, 1, 3, 5, 5, 15}.
Median = (3 + 5) / 2 = 4.

Use when the dataset has out-
liers or a skewed distribution,
as the median is robust to ex-
treme values.

Weighted Median The value where 50% of the
cumulative weight lies.

Sort values by weight; find
the point where cumulative
weight = 50%.

Weights: {1, 1, 1, 1, 1, 1}.
Weighted median = 4.

Use when data points have
varying importance or
weights, and you want a
robust central measure.

Mean The average of all values in
the dataset.

Mean =
∑

xi

n . (1 + 1 + 3 + 5 + 5 + 15) / 6
= 30 / 6 = 5.

Use for normally distributed
data where all values are
equally important, as the
mean is sensitive to outliers.

Weighted Mean The average where each value
has a weight.

Weighted Mean =
∑

(xi·wi)∑
wi

. Values: {1, 1, 3, 5, 5, 15};
Weights: {2, 1, 1, 3, 2, 1}.
Weighted Mean =
(1·2)+(1·1)+(3·1)+(5·3)+(5·2)+(15·1)

2+1+1+3+2+1 =
2+1+3+15+10+15

10 = 4.6.

Use when some values con-
tribute more significantly to
the average than others, such
as in weighted surveys or av-
erages.

Geometric Mean The nth root of the product
of all values, where n is the
total count.

Geometric Mean = n
√∏

xi.
6
√
1 · 1 · 3 · 5 · 5 · 15 ≈ 3.56. Use for data involving rates,

ratios, or percentages, such
as growth rates in finance or
population studies.

Trimmed Mean The mean after removing a
percentage of the smallest
and largest values.

Remove p% of smallest and
largest values; compute mean
of remaining.

Remove 1 value from each end
(10%). New dataset: {1, 3, 5,
5}. Trimmed Mean = (1 + 3
+ 5 + 5) / 4 = 3.5.

Use when mitigating the in-
fluence of outliers is impor-
tant, but you still want to use
an average.
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3 Descriptive Measures of Variability

Table 3: Descriptive Measures of Variability with Examples

Measure Explanation Formula and Example When to Use
Variance
(MSE)

Measures variability
by averaging squared
deviations from the
mean.

Var =

∑
(xi − x̄)2

n− 1
.

Dataset: {1, 1, 3, 5, 5, 15}, x̄ = 5.
Var = 16+16+4+0+0+100

5 = 22.67.

Quantifies variability
in normally distributed
data. Sensitive to out-
liers.

Standard
Deviation
(SD)

Represents the average
distance of values from
the mean.

SD =
√
Variance.

Dataset: Var = 22.67.
SD =

√
22.67 ≈ 4.76.

Use for data spread
in the same unit as
the data. Commonly
used in normal distri-
butions.

Mean
Absolute
Deviation
(MAD)

Represents the average
absolute differences
from the mean.

MAD =

∑
|xi − x̄|
n

.

Dataset: {1, 1, 3, 5, 5, 15}, x̄ = 5.
MAD = 4+4+2+0+0+10

6 = 3.33.

Less sensitive to out-
liers than variance or
SD.

Covariance Measures the joint
variability between
two variables.

Cov(X,Y ) =

∑
(xi − X̄)(yi − Ȳ )

n
.

Dataset: X = {1, 2, 3, 4, 5}, Y = {10, 20, 30, 20, 40}.
Cov(X,Y ) = 60

5 = 12.

Used to assess the di-
rection of a relation-
ship. Not standard-
ized.

Range The difference between
the largest and small-
est values.

Range = Max(x)−Min(x).

Dataset: {1, 1, 3, 5, 5, 15}.
Range = 15− 1 = 14.

Quick measure of vari-
ability. Highly sensi-
tive to outliers.

Ranks The position of each
value in the ordered
dataset.

Ordered dataset: {1, 1, 3, 5, 5, 15}.
Ranks: {1, 2, 3, 4, 5, 6}.

Used for ordinal data
or non-parametric
statistics like Spear-
man’s correlation.
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Table 3: (continued)

Measure Explanation Formula and Example When to Use
Percentiles The value below which

a given percentage of
observations fall.

Pk = Value at
k

100
(n+ 1).

Dataset: {1, 1, 3, 5, 5, 15}.
P25 = 2.75, value between ranks 2 and 3.

Used for dividing data
into parts for analysis
(e.g., boxplots).

Interquartile
Range
(IQR)

The range between the
first quartile (Q1) and
the third quartile (Q3).

IQR = Q3−Q1.

Dataset: Q1 = 3, Q3 = 5.
IQR = 5− 3 = 2.

Robust to outliers;
useful for skewed
datasets.
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4 Visualizations of Distribution

Table 4: When to Use Common Data Visualizations and Tools

Tool When to Use What It Shows Example
Contingency Ta-
ble

For categorical data to an-
alyze relationships.

A table of frequencies or propor-
tions for combinations of two cat-
egorical variables.

Analyzing the relationship be-
tween gender (Male/Female)
and purchase decision (Yes/No).

Frequency Table For counting categorical
or discrete values.

A table of counts or proportions
for each value or category.

Counting the number of students
in each grade level (Freshman,
Sophomore, etc.).

Histogram For visualizing numerical
data distributions.

Bar plot showing how data is dis-
tributed across intervals (bins).

Showing the distribution of
heights in a population.

Boxplot For continuous data to
summarize distributions.

Shows median, quartiles, IQR,
and outliers for one or more
groups.

Comparing test scores for stu-
dents across different classes.

Density Plot For smoothed distribu-
tions of continuous data.

A curve estimating the probabil-
ity density function (PDF).

Comparing the distribution of
income levels for two regions.

Violin Plot For continuous data to
show both the distribution
and summary statistics.

Combines a boxplot (median,
quartiles) with a kernel density
plot to show data distribution
symmetrically.

Comparing the distribution of
reaction times across different
experimental groups.
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5 Correlation and Correlation Tests

5.1 Pearson Correlation

Assumptions:

• Both variables are continuous.

• The relationship is linear.

• Variables are normally distributed (or approximately so).

• No significant outliers.

Formula:

ρ =
Cov(X,Y )

σX · σY

Where:

• Cov(X,Y ) is the covariance between X and Y ,

• σX and σY are the standard deviations of X and Y .

Example Calculation:

• Dataset: {1, 2, 3, 4, 5}, {10, 20, 30, 20, 40}.

• Mean of X: X̄ = 3, Mean of Y : Ȳ = 24.

• Covariance: Cov(X,Y ) =
∑

(xi−X̄)(yi−Ȳ )
n = 10.

• Standard Deviations: σX =
√
2, σY =

√
160.

• Pearson Correlation: ρ = 10√
2·
√
160

= 0.25.

Interpretation: Weak positive linear correlation (ρ = 0.25).

5.2 Spearman’s Rank Correlation

Assumptions:

• Data can be ranked (ordinal or continuous).

• The relationship is monotonic (increasing or decreasing consistently).

Formula:

ρs = 1− 6
∑

d2i
n(n2 − 1)

Where:

• di is the difference between the ranks of Xi and Yi.

Example Calculation:

• Dataset: {1, 2, 3, 4, 5}, {10, 20, 30, 20, 40}.

• Ranks: X ranks: {1, 2, 3, 4, 5}, Y ranks: {1, 2.5, 4, 2.5, 5}.

• Differences (di): {0,−0.5,−1, 1.5, 0}, (d2i = {0, 0.25, 1, 2.25, 0}).

• Spearman Correlation: ρs = 1− 6·3.5
5(52−1) = 0.9.

Interpretation: Strong positive monotonic relationship (ρs = 0.9).
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5.3 Kendall’s Tau

Assumptions:

• Works best for small datasets.

• Data can be ranked.

• The relationship is monotonic.

Formula:

τ =
(Number of Concordant Pairs)− (Number of Discordant Pairs)(

n
2

)
Where:

• Concordant pairs: If Xi > Xj and Yi > Yj , or Xi < Xj and Yi < Yj ,

• Discordant pairs: If Xi > Xj and Yi < Yj , or Xi < Xj and Yi > Yj ,

•
(
n
2

)
= n(n−1)

2 : Total number of unique pairs.

Example:

Dataset: X = {1, 2, 3, 4, 5}, Y = {10, 20, 30, 20, 40}.

Concordant Pairs:

• Pair 1: (X1, Y1) = (1, 10) and (X2, Y2) = (2, 20) ⇒ 1 < 2 and 10 < 20.

• Pair 2: (X1, Y1) = (1, 10) and (X3, Y3) = (3, 30) ⇒ 1 < 3 and 10 < 30.

• Pair 3: (X1, Y1) = (1, 10) and (X4, Y4) = (4, 20) ⇒ 1 < 4 and 10 < 20.

• Pair 4: (X1, Y1) = (1, 10) and (X5, Y5) = (5, 40) ⇒ 1 < 5 and 10 < 40.

• Pair 5: (X2, Y2) = (2, 20) and (X3, Y3) = (3, 30) ⇒ 2 < 3 and 20 < 30.

• Pair 7: (X2, Y2) = (2, 20) and (X5, Y5) = (5, 40) ⇒ 2 < 5 and 20 < 40.

• Pair 9: (X3, Y3) = (3, 30) and (X5, Y5) = (5, 40) ⇒ 3 < 5 and 30 < 40.

• Pair 10: (X4, Y4) = (4, 20) and (X5, Y5) = (5, 40) ⇒ 4 < 5 and 20 < 40.

Discordant Pairs:

• Pair 6: (X2, Y2) = (2, 20) and (X4, Y4) = (4, 20) ⇒ 2 < 4 but 20 = 20 (no increase/decrease in Y ).

• Pair 8: (X3, Y3) = (3, 30) and (X4, Y4) = (4, 20) ⇒ 3 < 4 but 30 > 20.

Summary:

• Total Concordant Pairs: 8.

• Total Discordant Pairs: 2.

• Kendall’s Tau:

τ =
Number of Concordant Pairs−Number of Discordant Pairs(

n
2

)
τ =

8− 2

10
= 0.6.

Interpretation: Moderate positive ordinal relationship (τ = 0.6).
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5.4 Point-Biserial Correlation

Assumptions:

• One variable is continuous, and the other is binary (e.g., 0 or 1).

Formula:

r =
X̄1 − X̄0

s
·
√

n1n0

n2

Where:

• X̄1: Mean of the continuous variable for group 1 (binary = 1),

• X̄0: Mean of the continuous variable for group 0 (binary = 0),

• s: Standard deviation of the continuous variable,

• n1, n0: Number of observations in group 1 and group 0,

• n: Total number of observations (n = n1 + n0).

Example:

• Binary Variable (Y ): {0, 1, 1, 0, 1}

• Continuous Variable (X): {10, 20, 30, 20, 40}

Step 1: Group Statistics

• Group 1 (Y = 1): X = {20, 30, 40}

X̄1 =
20 + 30 + 40

3
= 30, n1 = 3

• Group 0 (Y = 0): X = {10, 20}
X̄0 =

10 + 20

2
= 15, n0 = 2

Step 2: Compute Standard Deviation of X

X̄ =
10 + 20 + 30 + 20 + 40

5
= 24

s =

√∑
(xi − X̄)2

n
=

s =

√
196 + 16 + 36 + 16 + 256

5
=

√
104 ≈ 10.2

Step 3: Compute Point-Biserial Correlation

r =
X̄1 − X̄0

s
·
√

n1n0

n2

r =
30− 15

10.2
·
√

3 · 2
52

=
15

10.2
·
√

6

25
= 1.47 · 0.49 = 0.72

Interpretation: There is a strong positive relationship (r = 0.72) between the binary variable (Y ) and
the continuous variable (X).
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5.5 Partial Correlation

When to Use: Partial correlation is used to measure the strength and direction of the linear relationship
between two variables (X and Y ) while controlling for the influence of a third variable (Z). It helps isolate
the unique relationship between X and Y by removing the effect of Z.

Assumptions:

• All variables are continuous.

• Relationships between variables are linear.

• Variables are measured without error.

Formula: The partial correlation between X and Y while controlling for Z is:

ρXY ·Z =
ρXY − ρXZ · ρY Z√
(1− ρ2XZ)(1− ρ2Y Z)

Where:

• ρXY : Correlation between X and Y ,

• ρXZ : Correlation between X and Z,

• ρY Z : Correlation between Y and Z.

Example: Given the datasets:

X = {1, 2, 3, 4, 5}, Y = {10, 20, 30, 20, 40}, Z = {5, 15, 25, 20, 35}

Step 1: Compute Pairwise Correlations Using a statistical tool or Pearson’s correlation formula,
we calculate:

• ρXY = 0.25,

• ρXZ = 0.5,

• ρY Z = 0.4.

(Note: These values are chosen to ensure a valid correlation matrix with a non-negative determinant.)
Step 2: Compute Partial Correlation Substitute the values into the formula:

ρXY ·Z =
ρXY − ρXZ · ρY Z√
(1− ρ2XZ)(1− ρ2Y Z)

ρXY ·Z =
0.25− (0.5 · 0.4)√
(1− 0.52)(1− 0.42)

Simplify step by step:

ρXY ·Z =
0.25− 0.2√

(1− 0.25)(1− 0.16)
=

0.05√
0.75 · 0.84

ρXY ·Z =
0.05√
0.63

=
0.05

0.7937
≈ 0.063

Step 3: Interpret the Partial Correlation The partial correlation coefficient is approximately 0.063.
This value suggests a weak positive relationship between X and Y after accounting for the influence of
Z. The low value indicates that much of the relationship between X and Y is explained by their shared
association with Z.
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6 Sampling Distributions

Sampling distributions are the probability distributions of sample statistics (e.g., mean, variance) derived
from repeated sampling of a population. This section explains key concepts like sample statistics, sampling
distributions, bias, standard error, bootstrap, and confidence intervals.

6.1 Sample Statistic

Explanation: A sample statistic is a numerical measure computed from a sample, such as the sample mean
(x̄) or sample variance (s2).

Formula: For a sample of size n,

x̄ =

∑n
i=1 xi

n
, s2 =

∑n
i=1(xi − x̄)2

n− 1
.

6.2 Sampling Distribution

Explanation: The sampling distribution is the probability distribution of a sample statistic when drawn
from the population multiple times. For large n, the sampling distribution of the sample mean approximates
a normal distribution (Central Limit Theorem).

Formula: The mean and variance of the sampling distribution of the sample mean are:

µx̄ = µ, σ2
x̄ =

σ2

n
,

where µ and σ2 are the population mean and variance.
Example: Given a population with µ = 10, σ2 = 4, and n = 16:

µx̄ = 10, σ2
x̄ =

4

16
= 0.25, σx̄ =

√
0.25 = 0.5

6.3 Bias (Reliability vs. Validity)

Explanation: - Bias refers to the systematic error in sample statistics, leading to incorrect estimates of
population parameters. - Reliability refers to the consistency of measurements. - Validity refers to the
accuracy of measurements.

Example: - A biased estimator consistently overestimates or underestimates the true population pa-
rameter. - A reliable but invalid estimator might give consistent but inaccurate results.

6.4 Standard Error of the Sample

Explanation: The standard error (SE) quantifies the variability of a sample statistic, such as the sample
mean, across repeated random samples drawn from the population. It indicates how much the sample mean
is expected to fluctuate around the population mean if multiple samples are taken. A smaller SE implies
more precise estimates of the population parameter.

Formula: For the standard error of the sample mean:

SEx̄ =
σ√
n
,

where:

• σ: The population standard deviation,

• n: The sample size.
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Example: Suppose the population standard deviation is σ = 10 and the sample size is n = 25:

SEx̄ =
σ√
n
=

10√
25

=
10

5
= 2

Interpretation: - The sample mean is expected to vary by approximately 2 units from the population
mean across repeated samples. - If n increases (e.g., n = 100), SEx̄ decreases:

SEx̄ =
10√
100

= 1

This demonstrates that larger sample sizes result in more precise estimates (smaller standard error).
Connection to Sampling Distribution: - The standard error is the standard deviation of the sampling

distribution of the sample mean. - It reflects the spread of the sample means around the true population
mean in repeated sampling.

6.5 Bootstrap

Explanation: Bootstrap is a resampling method to estimate the sampling distribution of a statistic by
repeatedly sampling with replacement from the original sample. It is particularly useful when the theoretical
distribution of a statistic is unknown or when the sample size is small.

Steps:

1. Start with an original sample of size n, e.g., {2, 4, 6, 8, 10}.

2. Generate multiple resamples of size n by sampling with replacement, e.g., {4, 6, 6, 8, 10}, {2, 2, 6, 8, 8},
etc.

3. Compute the desired statistic (e.g., mean) for each resample.

4. Use the distribution of the resampled statistics to estimate variability (e.g., standard error) or construct
confidence intervals.

Example: Original sample: {2, 4, 6, 8, 10}. Bootstrap means:

Resample 1: {4, 6, 6, 8, 10} → x̄ = 6.8, Resample 2: {2, 2, 6, 8, 8} → x̄ = 5.2

Repeat this process B = 1000 times to build the bootstrap distribution of the mean.
—

6.6 Jackknifing

Explanation: Jackknifing is a resampling method that estimates a statistic’s bias or standard error by
systematically leaving out one observation at a time from the sample and recomputing the statistic. Unlike
bootstrapping, it does not involve random sampling.

Steps:

1. Start with an original sample of size n, e.g., {2, 4, 6, 8, 10}.

2. Create n subsets, each leaving out one observation:

Subset 1: {4, 6, 8, 10}, Subset 2: {2, 6, 8, 10}, . . .

3. Compute the statistic (e.g., mean) for each subset.

4. Aggregate the results to estimate bias or variability.

Example: Original sample: {2, 4, 6, 8, 10}, with n = 5.

Subset 1: {4, 6, 8, 10} → x̄1 =
4 + 6 + 8 + 10

4
= 7, Subset 2: {2, 6, 8, 10} → x̄2 =

2 + 6 + 8 + 10

4
= 6.5

Repeat for all subsets, then compute:

Jackknife Mean: x̄jackknife =

∑n
i=1 x̄i

n
=

7 + 6.5 + . . .

5
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6.7 Confidence Interval (CI)

Explanation: A confidence interval provides a range of values within which the population parameter is
likely to lie, based on the sample statistic.

Formula:
CI = x̄± z∗ · SEx̄

where z∗ is the critical value for a given confidence level, and SEx̄ is the standard error of the sample mean.
How to Look Up z∗:

1. Choose the Confidence Level (1− α): For example, a 95% confidence level implies α = 0.05.

2. Find the Area in the Standard Normal Table: - Divide α by 2 for the tails: α/2 = 0.025 (for 95% CI).
- The cumulative probability for the upper tail is 1− 0.025 = 0.975.

3. Look Up in the Z-Table: Find the row and column in the Z-table corresponding to 0.975. The value is
z∗ = 1.96.

Example: Given x̄ = 6, SEx̄ = 2, and a 95% confidence level (z∗ = 1.96):

CI = x̄± z∗ · SEx̄

CI = 6± 1.96 · 2 = 6± 3.92 = [2.08, 9.92]

Interpretation: There is a 95% probability that the population mean lies within the interval [2.08, 9.92].
Common z∗ Values for Confidence Levels:

• 90% CI: z∗ = 1.645

• 95% CI: z∗ = 1.96

• 99% CI: z∗ = 2.576
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7 Normal Distribution

The Normal Distribution (or Gaussian distribution) is a continuous probability distribution characterized
by the probability density function (PDF), which yields a bell-shaped distribution.

7.1 Standard Normal Distribution

A standard normal distribution is a special case where the mean and standard deviation are:

µ = 0, σ = 1 (1)

This standardization allows for easy comparison of different datasets.

7.2 Probability Density Function

The Probability Density Function (PDF) describes the relative likelihood of a continuous random
variable taking on a given value. For a normal distribution, the PDF is:

f(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2 (2)

where:

• x is the value of the random variable,

• µ is the mean (center of the distribution),

• σ is the standard deviation (spread of the distribution),

• e is Euler’s number (≈ 2.718),

• π is the mathematical constant (≈ 3.1416).

Key Properties of the PDF

1. The function is always non-negative:

2. The total probability sums to 1:

3. The function gives the relative likelihood of different values of X but not exact probabilities.

7.3 Z-Score (Standardization)

The Z-score transforms a normal variable X into a standard normal variable Z:

Z =
X − µ

σ
(3)

• If Z > 0: the value is above the mean.

• If Z < 0: the value is below the mean.

• If Z ≈ 0: the value is near the mean.

Z-scores are commonly used in hypothesis testing and normalization.

7.4 Q-Q Plot for Normality Check

A quantile-quantile (Q-Q) plot is a graphical tool to assess if a dataset follows a normal distribution. It
compares the quantiles of the sample data against the quantiles of a theoretical normal distribution.

If the data is normally distributed, the points should align along a diagonal line.
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8 Student’s t-distribution

The Student’s t-distribution is a continuous probability distribution used in statistical inference, partic-
ularly when estimating the mean of a normally distributed population with small sample sizes.

8.1 Difference from the Normal Distribution

The t-distribution is similar to the normal distribution but has heavier tails, meaning it gives more probability
to extreme values. This accounts for additional uncertainty due to small sample sizes.

• When the sample size (n) is large, the t-distribution approximates the standard normal distribution.

• When n is small, the t-distribution has wider tails to reflect increased variability.

8.2 Degrees of Freedom (df)

The degrees of freedom (ν) represent the number of independent pieces of information available for
estimating variability. It is typically calculated as:

ν = n− 1 (4)

where n is the sample size.

• A smaller ν leads to a distribution with heavier tails.

• As ν → ∞, the t-distribution converges to the standard normal distribution.

8.3 t-Score

The t-score is used in hypothesis testing and confidence interval estimation. It is given by:

t =
X̄ − µ

s√
n

(5)

where:

• X̄ is the sample mean,

• µ is the population mean (hypothesized value),

• s is the sample standard deviation,

• n is the sample size.

The t-score follows a t-distribution with ν = n− 1 degrees of freedom.

8.4 Confidence Interval (CI) Calculation

The t-distribution is used to calculate confidence intervals when the population standard deviation (σ) is
unknown and must be estimated from the sample.

A two-sided confidence interval for the population mean is given by:

X̄ ± tα/2,ν · s√
n

(6)

where:

• tα/2,ν is the critical t-value from the t-table at significance level α,

• s/
√
n is the standard error of the mean.
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9 Binomial Distribution

9.1 Definition and Properties

The Binomial Distribution models the number of successes in a fixed number of independent trials, where
each trial has two possible outcomes: success or failure. It is widely used in probability and statistics for
discrete random variables.

The probability mass function (PMF) of a binomially distributed random variable X is given by:

P (X = k) =

(
n

k

)
pk(1− p)n−k (7)

where:

• n is the number of trials,

• k is the number of successes,

• p is the probability of success in a single trial,

•
(
n
k

)
= n!

k!(n−k)! is the binomial coefficient.

9.2 Binomial Trials and Success Probability

A binomial trial (or Bernoulli trial) is a single experiment where:

• There are only two possible outcomes: success (1) or failure (0).

• The probability of success, p, remains constant across trials.

• The trials are independent, meaning the outcome of one does not affect another.

If we repeat a binomial trial n times, the number of successes follows a binomial distribution.

9.3 Mean and Variance

For a binomially distributed random variable X ∼ Bin(n, p), the expected value (mean) and variance are
given by:

E(X) = np (8)

Var(X) = np(1− p) (9)

These properties show that as n increases, the distribution’s spread depends on p.

9.4 Normal Approximation to the Binomial

For large n, the binomial distribution can be approximated by a normal distribution using the Central Limit
Theorem. If n is large and p is not too close to 0 or 1, then:

X ≈ N (np, np(1− p)) (10)

This normal approximation is useful when working with large datasets, as calculating binomial probabil-
ities directly can be computationally intensive.
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10 Poisson Distribution

10.1 Definition and Properties

The Poisson distribution is a discrete probability distribution that models the number of events occurring
within a fixed interval of time or space, assuming that the events occur independently and at a constant
average rate.

The probability mass function (PMF) of a Poisson-distributed random variable X is given by:

P (X = k) =
λke−λ

k!
, k = 0, 1, 2, . . . (11)

where:

• k is the number of occurrences,

• λ is the expected number of occurrences in the given interval (mean rate),

• e is Euler’s number (≈ 2.718).

10.2 Poisson Process and Rate Parameter

A Poisson process describes a sequence of events occurring randomly over time or space, characterized by:

• Events occurring independently of each other.

• A constant rate λ, meaning the probability of an event occurring is proportional to the interval size.

• At most one event per infinitesimally small interval.

The parameter λ is both the mean and variance of the Poisson distribution:

E(X) = λ, Var(X) = λ. (12)
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11 Hypothesis Testing

11.1 Introduction

Hypothesis testing is a statistical method used to evaluate whether there is enough evidence to reject
a null hypothesis in favor of an alternative hypothesis. It is widely applied in scientific research, business
analytics, and A/B testing to assess whether an observed effect is statistically significant or occurred by
chance.

11.2 Key Concepts in Hypothesis Testing

• Null Hypothesis (H0): The assumption that there is no effect, no difference, or no relationship
between groups or variables.

• Alternative Hypothesis (H1): The hypothesis suggesting that an effect, difference, or relationship
exists.

• Significance Level (α): The probability of rejecting H0 when it is actually true. A common threshold
is 0.05, meaning a 5% risk of a false positive.

• P-Value: The probability of obtaining results as extreme as (or more extreme than) the observed
data, assuming H0 is true. A p-value below α typically leads to rejecting H0.

• Type I Error: Occurs when H0 is wrongly rejected (false positive). The probability of this occurring
is α.

• Type II Error: Occurs when H0 is not rejected even though H1 is true (false negative). The
probability of this occurring is β.

• Statistical Power (1− β): The probability of correctly rejecting H0 when H1 is true. A power of at
least 0.8 (80%) is often desired.

• Effect Size: Measures the magnitude of the difference between groups. A small effect size requires a
larger sample size to detect reliably.

• Sample Size: The number of observations included in the test. Larger samples reduce variability and
increase statistical power.

11.3 Understanding Type I and Type II Errors

When conducting hypothesis tests, two types of errors may occur:

• Type I Error (α): Incorrectly rejecting a true H0 (false positive). Lowering α (e.g., from 0.05 to
0.01) reduces this risk but increases the chance of a Type II error.

• Type II Error (β): Failing to reject H0 when H1 is actually true (false negative). This often happens
when the sample size is too small or the effect size is weak.

Statistical power is the complement of β:

Power = 1− β. (13)

Higher power increases the ability to detect true effects and is improved by larger sample sizes or stronger
effect sizes.
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11.4 One-Tailed vs. Two-Tailed Tests

• One-Tailed Test: Tests for a difference in a specific direction (e.g., whether Method A is better than
Method B).

H1 : µA > µB or H1 : µA < µB .

• Two-Tailed Test: Tests for any significant difference in either direction (e.g., whether Method A and
Method B perform differently).

H1 : µA ̸= µB .

A one-tailed test has greater power to detect an effect in the expected direction, while a two-tailed test
is more conservative and considers deviations in both directions.

11.5 One-Way vs. Two-Way Tests

• One-Way Test: Compares the means of two independent groups. Example: Testing whether a new
drug improves recovery rates compared to a placebo.

• Two-Way Test: Examines the effects of two independent variables and their interaction. Example:
Testing whether both drug type and dosage affect recovery rates.

11.6 Steps in Hypothesis Testing

1. Define the Hypotheses: Formulate H0 and H1.

2. Choose the Significance Level (α): Typically 0.05 or 0.01.

3. Select the Statistical Test: Depends on data type and assumptions (e.g., Z-test, t-test, chi-square
test).

4. Compute the Test Statistic: A measure of deviation from H0.

5. Compare to Critical Value or Compute P-Value: Determine whether the result is statistically
significant.

6. Make a Decision: Reject H0 if the p-value is below α, otherwise fail to reject H0.

11.7 Determining Statistical Power and Sample Size

Power analysis is used to calculate the required sample size for a given effect size and significance level.
The key factors influencing power are:

• Effect Size: Larger effects are easier to detect.

• Sample Size: A larger sample reduces variability and increases power.

• Significance Level (α): A stricter α (e.g., 0.01) reduces false positives but requires a larger sample
to maintain power.

• Variability: Higher variance increases the required sample size.

The formula for estimating the minimum sample size needed for a test with power 1− β is:

n =
(Zα + Zβ)

2σ2

∆2
. (14)

where:

• Zα is the critical value for the chosen significance level.

• Zβ corresponds to the desired power (e.g., 80% power corresponds to Zβ = 0.84).

• σ is the standard deviation.

• ∆ is the expected difference between groups.
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12 A/B Testing using Two-Proportion Z Test

12.1 Introduction

A/B testing is a statistical method used to compare two versions of a treatment (e.g., a webpage, advertise-
ment, or drug) to determine which performs better. It is widely used in marketing, product optimization,
and clinical trials.

In an A/B test:

• Group A (control group) receives the original version.

• Group B (treatment group) receives the modified version.

• The outcome of interest (e.g., click-through rate, conversion rate) is compared between the two groups.

12.2 Hypothesis Setup

A/B testing is typically framed as a hypothesis test:

• Null Hypothesis (H0): There is no difference between A and B.

• Alternative Hypothesis (H1): There is a significant difference between A and B.

Mathematically, let pA and pB be the success probabilities for groups A and B:

H0 : pA = pB . (15)

The choice of alternative hypothesis depends on whether a two-tailed test or a one-tailed test is appro-
priate.

• Two-Tailed Test:
H1 : pA ̸= pB

Used when testing for any significant difference in either direction.

• One-Tailed Test (Greater):
H1 : pA < pB

Used when testing if B performs significantly better than A.

• One-Tailed Test (Lesser):
H1 : pA > pB

Used when testing if B performs significantly worse than A.

12.3 Example: Testing Click-Through Rate (CTR)

Suppose a company wants to test whether changing a button color on a webpage increases the click-through
rate (CTR).

• Version A (Control): Blue button.

• Version B (Treatment): Red button.

The company randomly assigns 10,000 visitors:

• 5,000 see the blue button (nA = 5000), with 250 clicks (XA = 250).

• 5,000 see the red button (nB = 5000), with 300 clicks (XB = 300).

The observed click-through rates (CTR) are:

p̂A =
250

5000
= 0.05, p̂B =

300

5000
= 0.06. (16)
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12.4 Statistical Test: Two-Proportion Z-Test

Since we are comparing two proportions, we use a two-proportion Z-test:

Z =
(p̂A − p̂B)√

p̂(1− p̂)
(

1
nA

+ 1
nB

) (17)

where:

• p̂ = XA+XB

nA+nB
is the pooled proportion.

• nA, nB are sample sizes.

For our example:

p̂ =
250 + 300

5000 + 5000
= 0.055. (18)

Computing the Z-score:

Z =
(0.05− 0.06)√

0.055(1− 0.055)
(

1
5000 + 1

5000

) . (19)

12.5 Interpreting Results: One-Tailed vs. Two-Tailed Tests

Once the Z-value is computed, we compare it to critical values from the standard normal distribution.

• Two-Tailed Test: If |Z| is greater than the critical value at α/2 (e.g., ±1.96 for α = 0.05), we reject
H0 and conclude a significant difference.

• One-Tailed Test: If Z is greater than the critical value for α (e.g., 1.645 for α = 0.05), we reject H0 in
favor of the alternative hypothesis.

12.6 Choosing Between One-Tailed and Two-Tailed Tests

• Use a one-tailed test when you have a clear directional hypothesis.

• Use a two-tailed test when any difference, in either direction, is important.

12.7 Practical Considerations

• Sample Size: A/B tests require sufficient sample sizes to detect meaningful effects.

• Multiple Testing: Running many A/B tests increases the risk of false positives (Type I error).

• Effect Size: Even if a difference is statistically significant, it must be practically meaningful.
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13 Permutation Test

13.1 Introduction

A permutation test is a non-parametric statistical method used to assess whether two groups differ signif-
icantly. Unlike traditional hypothesis tests that rely on assumptions about normality, the permutation test
makes minimal assumptions and is particularly useful for small sample sizes or non-normal data.

The test is based on randomly shuffling the observed data to generate a null distribution, then comparing
the observed test statistic to this distribution.

13.2 When to Use a Permutation Test

• When normality assumptions of parametric tests (e.g., t-test) do not hold.

• When sample sizes are small, making standard tests unreliable.

• When analyzing experimental or observational data without clear distributional assumptions.

13.3 Steps in a Permutation Test

1. Define the Hypotheses:

• H0 (Null Hypothesis): The two groups come from the same distribution.

• H1 (Alternative Hypothesis): The two groups have different distributions.

2. Compute the Observed Test Statistic: Calculate a metric such as the difference in means, medians,
or another relevant statistic.

3. Shuffle (Permute) the Data: Randomly reassign the observed values between the two groups
multiple times.

4. Recalculate the Test Statistic: Compute the statistic for each shuffled dataset to form the null
distribution.

5. Compare the Observed Statistic to the Null Distribution: Compute a p-value based on how
extreme the observed statistic is compared to the permuted distribution.

13.4 Example: Testing a New Drug vs. Placebo

A researcher tests whether a new drug improves recovery times compared to a placebo. The recovery times
(in days) for each group are:

• Drug Group: [5, 7, 6, 4, 5]

• Placebo Group: [8, 9, 6, 10, 7]

Step 1: Compute the Observed Statistic
The observed difference in mean recovery times is:

X̄drug − X̄placebo = (5.4− 8) = −2.6. (20)

Step 2: Generate the Null Distribution
The values are pooled and randomly reassigned to two groups multiple times (e.g., 10,000 permutations).

The mean difference is recalculated for each permutation, forming the null distribution.
Step 3: Compute the p-value
The p-value is the proportion of permuted differences as extreme as or more extreme than the observed

difference. If p < 0.05, the researcher rejects H0 and concludes that the drug significantly affects recovery
time.
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14 t-Test

14.1 Introduction

A t-test is a statistical method used to determine whether there is a significant difference between the means
of one or two groups. It is widely used in hypothesis testing, particularly when the sample size is small and
the population variance is unknown.

There are four main types of t-tests:

• One-Sample t-Test: Compares the mean of a single sample to a known population mean.

• Independent (Two-Sample) t-Test (Student’s t-Test): Compares the means of two independent
groups.

• Welch’s t-Test: A modification of the independent t-test that does not assume equal variances.

• Paired t-Test: Compares means from the same subjects under two different conditions (e.g., before
and after treatment).

14.2 Assumptions of the t-Test

• The data should be approximately normally distributed, especially for small samples.

• The samples should be independent (except for the paired t-test).

• For the standard two-sample t-test, the variances of the two groups should be equal (Welch’s
t-test relaxes this assumption).
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15 One-Sample t-Test

15.1 Definition

A one-sample t-test is used to determine whether the mean of a sample differs significantly from a known
population mean.

15.2 Hypotheses

• H0 : µ = µ0 (The sample mean equals the population mean).

• H1 : µ ̸= µ0 (The sample mean is different from the population mean).

15.3 Formula

The test statistic is calculated as:

t =
X̄ − µ0

s/
√
n

(21)

where:

• X̄ is the sample mean,

• µ0 is the population mean,

• s is the sample standard deviation,

• n is the sample size.

15.4 Example: Average Coffee Consumption

A coffee shop owner believes that customers drink an average of µ0 = 3.2 cups of coffee per day. A sample
of 25 customers reports:

• X̄ = 3.5 cups

• s = 0.8 cups

The t-value is:

t =
3.5− 3.2

0.8/
√
25

=
0.3

0.16
= 1.875. (22)

The calculated t-value is compared to the critical t-value for n− 1 = 24 degrees of freedom.
If |t| > tα/2, the owner concludes that customers drink a different amount than expected.
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16 Independent (Two-Sample) t-Test (Student’s t-Test)

16.1 Definition

A two-sample t-test compares the means of two independent groups to determine if they are significantly
different.

16.2 Hypotheses

• H0 : µ1 = µ2 (The two groups have the same mean).

• H1 : µ1 ̸= µ2 (The two groups have different means).

16.3 Formula

The test statistic is:

t =
X̄1 − X̄2√

s21
n1

+
s22
n2

(23)

16.4 Example: Effect of a New Teaching Method

A school tests whether a new teaching method improves student scores:

• Traditional Method: n1 = 30, X̄1 = 75, s1 = 10.

• New Method: n2 = 30, X̄2 = 80, s2 = 12.

The t-value is:

t =
75− 80√
102

30 + 122

30

=
−5√

3.33 + 4.8
=

−5

2.67
= −1.87. (24)
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17 Welch’s t-Test

17.1 Definition

Welch’s t-test is a variation of the two-sample t-test that does not assume equal variances. It is more
reliable when sample sizes and variances are unequal.

17.2 Formula

The t-value is calculated as:

t =
X̄1 − X̄2√

s21
n1

+
s22
n2

(25)

where:

• X̄1, X̄2 are the sample means,

• s1, s2 are the sample standard deviations,

• n1, n2 are the sample sizes.

Since Welch’s t-test does not assume equal variances, the degrees of freedom (df) are approximated using:

df =

(
s21
n1

+
s22
n2

)2
(s21/n1)2

n1−1 +
(s22/n2)2

n2−1

. (26)

17.3 Example: Salaries in Different Industries

A company compares employee salaries between two industries:

• Industry A: n1 = 40, X̄1 = 60, 000, s1 = 15, 000.

• Industry B: n2 = 25, X̄2 = 55, 000, s2 = 20, 000.

Step 1: Compute the t-Statistic

t =
60, 000− 55, 000√
(15,000)2

40 + (20,000)2

25

= 1.08.

Step 2: Compute the Degrees of Freedom

df =

(
225,000,000

40 + 400,000,000
25

)2
( 225,000,000

40 )
2

39 +
( 400,000,000

25 )
2

24

= 27.67.

Step 3: Interpretation
Using a t-table, we compare t = 1.08 with the critical value for df = 27.67 at α = 0.05. Since |t| is less

than the critical value ( 2.05 for two-tailed test), we fail to reject H0, meaning there is no significant salary
difference.
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18 Paired t-Test

18.1 Definition

A paired t-test compares the means of the same subjects measured under two conditions.

18.2 Formula

t =
D̄

sD/
√
n

(27)

where:

• D̄ is the mean of the paired differences,

• sD is the standard deviation of the differences,

• n is the number of pairs.

18.3 Example: Effect of a Workout Program

A fitness trainer tests if a 6-week workout program reduces resting heart rate. The resting heart rates of 10
participants are recorded before and after the program:

Participant Before (bpm) After (bpm)
1 72 68
2 75 70
3 78 73
4 80 74
5 76 72
6 74 70
7 79 75
8 77 71
9 75 70
10 78 72

Table 5: Heart rate measurements before and after training

Step 1: Compute Differences and Mean Difference

• Differences: D = {4, 5, 5, 6, 4, 4, 4, 6, 5, 6}.

• Mean difference:

D̄ =
4 + 5 + 5 + 6 + 4 + 4 + 4 + 6 + 5 + 6

10
=

49

10
= 4.9. (28)

Step 2: Compute Standard Deviation of Differences

• Squared differences from mean:

s2D =

∑
(Di − D̄)2

n− 1
. (29)

• Individual deviations: (−0.9, 0.1, 0.1, 1.1,−0.9,−0.9,−0.9, 1.1, 0.1, 1.1).

• Squared deviations: (0.81, 0.01, 0.01, 1.21, 0.81, 0.81, 0.81, 1.21, 0.01, 1.21).

• Sum of squared deviations: 6.99.
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• Standard deviation:

sD =

√
6.99

9
=

√
0.776 = 0.88. (30)

Step 3: Compute t-Statistic

t =
4.9

0.88/
√
10

=
4.9

0.278
= 17.63. (31)

Step 4: Interpretation
Using a t-table, we compare t = 17.63 to the critical value for df = 9 at α = 0.05 ( 2.26 for a two-tailed

test). Since t is much larger, we reject H0, concluding that the workout significantly reduces heart rate.
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19 Analysis of Variance (ANOVA)

Analysis of Variance (ANOVA) is a statistical method used to compare the means of multiple groups to
determine whether at least one of them significantly differs from the others. It is an extension of the t-test
for comparing more than two groups. Unlike multiple pairwise comparisons, which involve testing each pair
of groups separately, ANOVA provides a single omnibus test to determine if any significant difference exists
across all groups.

19.1 Key Concepts in ANOVA

• Pairwise Comparison Pairwise comparison tests whether the means of two groups are significantly
different. While useful, conducting multiple t-tests increases the risk of Type I error (false positives).
ANOVA overcomes this by providing a single overall test, reducing the probability of false findings.

• Omnibus Test The omnibus test in ANOVA assesses whether at least one group mean significantly
differs from the others. However, it does not indicate which groups are different. If the ANOVA test
is significant, post-hoc tests (e.g., Tukey’s HSD) are used for pairwise comparisons.

• Decomposition of Variance ANOVA partitions the total variability in the data into two components:

– Between-Group Variance: The variability due to differences between group means.

– Within-Group Variance (Error Variance): The variability due to differences within each
group.

• Sum of Squares (SS) ANOVA uses sum of squares (SS) to measure variance:

– Total Sum of Squares (SST): Measures overall variability in the data.

– Between-Group Sum of Squares (SSB): Measures variability due to differences between
group means.

– Within-Group Sum of Squares (SSW): Measures variability within each group.

These components follow:

SST = SSB + SSW . (32)

• F-Statistic The test statistic for ANOVA is the F-statistic, defined as:

F =
Between-Group Variance

Within-Group Variance
=

MSB

MSW
. (33)

where:

– MSB = SSB/dfB is the mean square between groups.

– MSW = SSW /dfW is the mean square within groups.

– dfB = k − 1 (degrees of freedom for between-group variance, where k is the number of groups).

– dfW = N − k (degrees of freedom for within-group variance, where N is the total number of
observations).

If the F-statistic is significantly large, it suggests at least one group mean is different from the others.

32



Group Scores Mean (X̄) Variance (s2)
Method A 75, 78, 82, 85, 79 79.8 13.7
Method B 70, 72, 68, 74, 71 71.0 6.5
Method C 85, 88, 92, 90, 86 88.2 8.7

Table 6: Exam Scores by Teaching Method

19.2 Example: Examining Exam Scores Across Three Teaching Methods

A researcher examines whether three different teaching methods lead to different exam scores. They randomly
assign 15 students into three groups:

Step 1: Compute Sum of Squares

SST =
∑

(Xi − X̄T )
2 = 544.4. (34)

SSB =
∑

n(X̄i − X̄T )
2 = 475.1. (35)

SSW = SST − SSB = 544.4− 475.1 = 69.3. (36)

Step 2: Compute Mean Squares and F-Statistic

• dfB = k − 1 = 3− 1 = 2.

• dfW = N − k = 15− 3 = 12.

• MSB = SSB/dfB = 475.1/2 = 237.55.

• MSW = SSW /dfW = 69.3/12 = 5.78.

F =
MSB

MSW
=

237.55

5.78
= 41.1. (37)

Step 3: Interpretation
Comparing F = 41.1 to the critical F-value from an F-table (F2,12 ≈ 3.89 at α = 0.05), we see that

41.1 > 3.89. Thus, we reject H0, concluding that at least one teaching method significantly affects exam
scores.

19.3 Post-Hoc Analysis: Tukey’s HSD

Since ANOVA indicates a significant difference, we perform Tukey’s Honest Significant Difference
(HSD) test to determine which groups differ.

HSD = q ×
√

MSW

n
. (38)

For q = 3.77 (from Tukey’s table at α = 0.05):

HSD = 3.77×
√

5.78

5
= 3.77× 1.07 = 4.03. (39)

Comparing mean differences:

• |79.8− 71.0| = 8.8 (Significant)

• |79.8− 88.2| = 8.4 (Significant)

• |71.0− 88.2| = 17.2 (Significant)

Since all differences exceed 4.03, all groups significantly differ from each other.
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20 Two-Way Analysis of Variance (ANOVA)

Two-Way ANOVA is a statistical method used to analyze the effects of two independent categorical
variables (factors) on a continuous dependent variable. It extends one-way ANOVA by evaluating the
individual effects of each factor (main effects) and their combined effect (interaction effect).

20.1 Key Concepts in Two-Way ANOVA

• Main Effects: The independent effect of each factor on the dependent variable.

• Interaction Effect: Whether the effect of one factor depends on the level of the other factor.

• Decomposition of Variance: Total variability is partitioned into three components:

– Factor A Variance: Variability due to differences in levels of factor A.

– Factor B Variance: Variability due to differences in levels of factor B.

– Interaction Variance: Variability due to the combined influence of both factors.

– Error Variance: Variability within groups not explained by factors.

Sum of Squares (SS) Components:

SST = SSA + SSB + SSAB + SSW . (40)

Where:

• SST = Total sum of squares

• SSA = Sum of squares for factor A

• SSB = Sum of squares for factor B

• SSAB = Sum of squares for the interaction

• SSW = Within-group sum of squares (error variance)

F-Statistics for Each Effect:

FA =
MSA

MSW
, FB =

MSB

MSW
, FAB =

MSAB

MSW
. (41)

Where:

• MSA = SSA/dfA is the mean square for factor A.

• MSB = SSB/dfB is the mean square for factor B.

• MSAB = SSAB/dfAB is the mean square for the interaction.

• MSW = SSW /dfW is the mean square error.

20.2 Example: Examining Exam Scores Based on Teaching Method and Study
Environment

A researcher investigates whether students’ exam scores are influenced by Teaching Method (A, B, C)
and Study Environment (Quiet, Noisy). Each student is randomly assigned to a combination of teaching
method and study environment.

Step 1: Compute Sum of Squares

SST =
∑

(Xi − X̄T )
2. (42)
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Teaching Method Study Environment Scores Mean (X̄)
Method A Quiet 75, 78, 82 78.3
Method A Noisy 68, 72, 71 70.3
Method B Quiet 80, 82, 85 82.3
Method B Noisy 73, 74, 76 74.3
Method C Quiet 85, 88, 90 87.7
Method C Noisy 77, 79, 81 79.0

Table 7: Exam Scores by Teaching Method and Study Environment

SSA =
∑

nA(X̄A − X̄T )
2. (43)

SSB =
∑

nB(X̄B − X̄T )
2. (44)

SSAB =
∑

nAB(X̄AB − X̄T )
2. (45)

SSW = SST − (SSA + SSB + SSAB). (46)

Step 2: Compute Mean Squares and F-Statistics

• dfA = a− 1 = 3− 1 = 2 (for Teaching Method).

• dfB = b− 1 = 2− 1 = 1 (for Study Environment).

• dfAB = (a− 1)(b− 1) = (3− 1)(2− 1) = 2 (for Interaction).

• dfW = N − ab = 18− 6 = 12 (for Within-Group variance).

MSA = SSA/dfA, MSB = SSB/dfB , MSAB = SSAB/dfAB , MSW = SSW /dfW . (47)

FA =
MSA

MSW
, FB =

MSB

MSW
, FAB =

MSAB

MSW
. (48)

Step 3: Interpretation - If FA is significant, teaching method affects scores. - If FB is significant,
study environment affects scores. - If FAB is significant, teaching method and study environment interact.

20.3 Post-Hoc Analysis: Tukey’s HSD

If the ANOVA test shows a significant main effect, post-hoc analysis determines which groups differ.

HSD = q ×
√

MSW

n
. (49)

For q = 3.77 (from Tukey’s table at α = 0.05):

HSD = 3.77×
√

MSW

n
. (50)

Comparing mean differences:

• |78.3− 70.3| = 8.0 (Check if > HSD)

• |82.3− 74.3| = 8.0 (Check if > HSD)

• |87.7− 79.0| = 8.7 (Check if > HSD)

Conclusion: If FAB is significant, the effect of teaching method depends on the study environment.
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21 Chi-Square Test

Chi-Square Test is a non-parametric statistical method used to examine the relationship between categor-
ical variables. It determines whether there is a significant association between two categorical variables in a
contingency table.

21.1 Key Concepts in Chi-Square Test

• Categorical Variables: The test applies to data divided into discrete categories (e.g., gender, pref-
erence, education level).

• Observed vs. Expected Frequencies: The test compares the actual data (observed frequencies)
with the frequencies expected under the assumption of independence.

• Independence: The null hypothesis states that the two categorical variables are independent, meaning
changes in one variable do not affect the other.

Types of Chi-Square Tests:

• Chi-Square Test for Independence: Determines if two categorical variables are associated.

• Chi-Square Goodness-of-Fit Test: Evaluates if a sample distribution matches an expected theo-
retical distribution.

21.2 Chi-Square Test for Independence

This test assesses whether two categorical variables are related by comparing observed and expected fre-
quencies.

Hypotheses:

• H0 (Null Hypothesis): The two categorical variables are independent.

• Ha (Alternative Hypothesis): The two categorical variables are dependent (associated).

Formula: The chi-square test statistic is calculated as:

χ2 =
∑ (Oij − Eij)

2

Eij
, (51)

where:

• Oij = Observed frequency in cell i, j.

• Eij = Expected frequency in cell i, j, calculated as:

Eij =
(Row Total)× (Column Total)

Grand Total
. (52)

Degrees of Freedom:
df = (r − 1)(c− 1), (53)

where r is the number of rows and c is the number of columns.
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Gender Product A Product B Total
Male 30 20 50
Female 40 30 70
Total 70 50 120

Table 8: Contingency Table of Gender and Product Preference

21.3 Example: Examining the Relationship Between Gender and Product Pref-
erence

A company surveys customers on their preferred product (A or B) and records responses by gender.
Step 1: Compute Expected Frequencies

• EMale,A = (50×70)
120 = 29.2.

• EMale,B = (50×50)
120 = 20.8.

• EFemale,A = (70×70)
120 = 40.8.

• EFemale,B = (70×50)
120 = 29.2.

Step 2: Compute the Chi-Square Statistic

χ2 =
∑ (Oij − Eij)

2

Eij
. (54)

χ2 =
(30− 29.2)2

29.2
+

(20− 20.8)2

20.8
+

(40− 40.8)2

40.8
+

(30− 29.2)2

29.2
. (55)

χ2 =
0.64

29.2
+

0.64

20.8
+

0.64

40.8
+

0.64

29.2
= 0.0219 + 0.0308 + 0.0157 + 0.0219 = 0.0903. (56)

Step 3: Determine Significance

• Degrees of freedom: df = (2− 1)(2− 1) = 1.

• Critical value at α = 0.05 from the chi-square table: 3.84.

• Since 0.0903 < 3.84, we fail to reject H0 (no significant association).

21.4 Chi-Square Goodness-of-Fit Test

This test determines whether observed categorical data matches a theoretical expected distribution.
Hypotheses:

• H0: The observed distribution matches the expected distribution.

• Ha: The observed distribution differs from the expected distribution.

Example: Testing Survey Responses
A company predicts that customers are equally likely to prefer three different flavors (π1 = π2 = π3 = 1

3 ).
They collect responses:

Chi-Square Calculation:

χ2 =
∑ (Oi − Ei)

2

Ei
. (57)

χ2 =
(50− 50)2

50
+

(40− 50)2

50
+

(60− 50)2

50
. (58)

χ2 = 0 +
100

50
+

100

50
= 0 + 2 + 2 = 4. (59)

Step 3: Compare with Critical Value
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Flavor Observed Expected
Chocolate 50 150× 1

3 = 50
Vanilla 40 150× 1

3 = 50
Strawberry 60 150× 1

3 = 50
Total 150 150

Table 9: Observed vs. Expected Preferences

• df = k − 1 = 3− 1 = 2.

• Critical value from chi-square table (α = 0.05) is 5.99.

• Since 4 < 5.99, we fail to reject H0 (data is consistent with the expected distribution).

Conclusion: Chi-square tests help determine relationships between categorical variables (independence
test) and whether distributions follow expected patterns (goodness-of-fit test).
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22 Simple Linear Regression

Simple Linear Regression is a statistical method used to model the relationship between a dependent
variable (Y ) and a single independent variable (X). The goal is to find the best-fitting line that predicts Y
based on X.

22.1 Key Concepts in Simple Linear Regression

• Dependent Variable (Y ): The outcome we want to predict.

• Independent Variable (X): The predictor variable.

• Regression Line: The best-fit line that minimizes the differences between observed and predicted
values.

• Residuals: The differences between observed and predicted values.

22.2 Regression Equation

The equation of a simple linear regression model is:

Y = β0 + β1X + ϵ (60)

where:

• Y = Dependent variable (response).

• X = Independent variable (predictor).

• β0 = Intercept (value of Y when X = 0).

• β1 = Slope (change in Y for a one-unit change in X).

• ϵ = Error term (captures random variability).

22.3 Estimating Parameters

The slope (β1) and intercept (β0) are estimated using the least squares method, which minimizes the sum
of squared residuals:

β1 =

∑
(Xi − X̄)(Yi − Ȳ )∑

(Xi − X̄)2
(61)

β0 = Ȳ − β1X̄ (62)

22.4 Example: Predicting Exam Scores Based on Study Hours

A researcher collects data on students’ study hours (X) and their exam scores (Y ).

Study Hours (X) Exam Score (Y )
2 50
3 55
5 65
7 75
9 85

Table 10: Study Hours vs. Exam Scores
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Step 1: Compute Means

X̄ =
2 + 3 + 5 + 7 + 9

5
= 5.2, Ȳ =

50 + 55 + 65 + 75 + 85

5
= 66

Step 2: Compute Slope (β1)∑
(Xi−X̄)(Yi−Ȳ ) = (2−5.2)(50−66)+(3−5.2)(55−66)+(5−5.2)(65−66)+(7−5.2)(75−66)+(9−5.2)(85−66)

= (−3.2)(−16) + (−2.2)(−11) + (−0.2)(−1) + (1.8)(9) + (3.8)(19)

= 51.2 + 24.2 + 0.2 + 16.2 + 72.2 = 164∑
(Xi − X̄)2 = (2− 5.2)2 + (3− 5.2)2 + (5− 5.2)2 + (7− 5.2)2 + (9− 5.2)2

= (−3.2)2 + (−2.2)2 + (−0.2)2 + (1.8)2 + (3.8)2

= 10.24 + 4.84 + 0.04 + 3.24 + 14.44 = 32.8

β1 =
164

32.8
= 5

Step 3: Compute Intercept (β0)

β0 = Ȳ − β1X̄ = 66− (5× 5.2) = 66− 26 = 40

Final Regression Equation:
Y = 40 + 5X (63)

22.5 Interpreting the Results

• Intercept (β0 = 40): If a student studies for 0 hours, their expected score is 40.

• Slope (β1 = 5): Each additional study hour increases the expected score by 5 points.

22.6 Goodness of Fit: R2

The coefficient of determination (R2) measures how well the model explains variability in Y :

R2 =
SSRegression

SSTotal
= 1− SSResiduals

SSTotal
. (64)

Key Interpretations:

• R2 = 1: Perfect fit.

• R2 = 0: Model explains no variability in Y .

• Higher R2 values indicate better model performance.

22.7 Significance Testing: t-Test for β1

To determine if X significantly predicts Y , we test:

• H0 : β1 = 0 (No relationship).

• Ha : β1 ̸= 0 (Significant relationship).

The t-statistic is:

t =
β1

SEβ1

, (65)

where SEβ1 is the standard error of the slope.
Decision Rule: - Compare |t| to the critical value from the t-distribution. - If p < α (e.g., 0.05), reject

H0 (significant relationship).
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22.8 Conclusion

Simple linear regression provides a powerful way to model relationships between two variables, estimate
trends, and make predictions. However, it assumes:

• Linearity between X and Y .

• Homoscedasticity (constant variance of errors).

• Normally distributed residuals.

• No strong multicollinearity (only applies to multiple regression).

When assumptions hold, regression models provide interpretable, useful insights for decision-making.
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23 Multiple Linear Regression

Multiple Linear Regression (MLR) is an extension of simple linear regression that models the relation-
ship between a dependent variable (Y ) and multiple independent variables (X1, X2, . . . , Xp). It is used when
more than one predictor variable is necessary to explain variations in the dependent variable.

23.1 Regression Equation

The general form of a multiple linear regression model is:

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ϵ (66)

where:

• Y = Dependent variable (response).

• X1, X2, ..., Xp = Independent variables (predictors).

• β0 = Intercept (value of Y when all X’s are zero).

• β1, β2, ..., βp = Regression coefficients (effect of each X on Y ).

• ϵ = Error term capturing random variability.

23.2 Estimating Parameters

The regression coefficients (β) are estimated using the Ordinary Least Squares (OLS) method by mini-
mizing the sum of squared residuals:

b = (XTX)−1XTY (67)

where:

• X = Matrix of independent variables (including a column of ones for the intercept).

• Y = Vector of observed values.

• b = Vector of estimated regression coefficients.

23.3 Goodness of Fit: R2 and Adjusted R2

Coefficient of Determination (R2):

R2 =
SSRegression

SSTotal
= 1− SSResiduals

SSTotal
. (68)

• R2 measures the proportion of variance in Y explained by the model.

• R2 = 1 indicates perfect fit, R2 = 0 means no explanatory power.

Adjusted R2 corrects for the number of predictors:

R2
adj = 1−

(
(1−R2)(n− 1)

n− p− 1

)
. (69)

• Penalizes adding unnecessary predictors.

• Helps prevent overfitting.
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Size (sq ft) X1 Bedrooms X2 Price ($Y$ in 1000s)
1500 3 300
1800 4 360
2100 3 420
2500 5 500
2800 4 550

Table 11: House Prices Dataset

23.4 Example: Predicting House Prices Based on Size and Bedrooms

A researcher models house prices ($Y$) based on house size ($X1$insquarefeet)andthenumberofbedrooms($X2$).
Regression Model:

Ŷ = β0 + β1X1 + β2X2 (70)

Assume the estimated coefficients are:

Ŷ = 50 + 0.18X1 + 10X2. (71)

Interpretation:

• Intercept β0 = 50: Predicted price when X1 = 0 and X2 = 0 (not practically meaningful).

• β1 = 0.18: Each additional square foot increases price by 0.18 (or $180 per sq ft).

• β2 = 10: Each additional bedroom increases price by $10,000.

23.5 Hypothesis Testing for Coefficients

Each coefficient is tested using:

t =
βj

SEβj

(72)

where SEβj is the standard error of βj .
Decision Rule: - If p < α (e.g., 0.05), reject H0 (significant predictor). - If p > α, fail to reject H0 (not

significant).

23.6 Conclusion

Multiple linear regression provides a flexible approach to modeling relationships between multiple predictors
and an outcome variable. However, it is crucial to:

• Interpret coefficients carefully.

• Validate assumptions using diagnostic tests.

• Avoid overfitting by selecting relevant predictors.

When assumptions hold, the OLS estimator remains BLUE, ensuring reliable and unbiased predictions.
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24 Interpreting Regression Coefficients for Different Data Types

Regression coefficients represent the estimated effect of an independent variable on the dependent variable
while holding all other variables constant. The interpretation of coefficients varies depending on the type of
independent variable.

24.1 Binary Variables (0/1, Dummy Variables)

Example: Predicting Salary Based on Gender

Salary = β0 + β1Gender (73)

where:

• Gender = 1 if Male, 0 if Female.

• β1 represents the average difference in salary between males and females.

Interpretation: If β1 = 5000, then males earn $5,000 more on average than females, assuming all else
is constant.

24.2 Categorical (Nominal) Variables with Dummy Coding

Categorical variables with k levels require k − 1 dummy variables.
Example: Predicting Test Scores Based on Education Level

Score = β0 + β1D1 + β2D2 (74)

where:

• D1 = 1 if Bachelor’s, 0 otherwise.

• D2 = 1 if Master’s, 0 otherwise.

• The reference group (PhD) is not included.

Interpretation: - β1 represents the difference in test scores between Bachelor’s and PhD. - β2 represents
the difference in test scores between Master’s and PhD.

24.3 Ordinal Variables

Ordinal variables maintain order but do not have equal spacing. They can be:

• Treated as continuous (if approximately equidistant).

• Coded as dummy variables.

Example: Predicting Job Satisfaction Based on Work Stress (Low, Medium, High)

Satisfaction = β0 + β1DMedium + β2DHigh (75)

Interpretation: - If β1 = −2, medium stress workers report 2 points lower satisfaction than low-stress
workers. - If β2 = −5, high-stress workers report 5 points lower satisfaction than low-stress workers.

24.4 Discrete Variables (Count Data)

Example: Predicting Customer Purchases Based on Number of Visits

Purchases = β0 + β1Visits (76)

Interpretation: If β1 = 0.3, each additional store visit increases expected purchases by 0.3.
For Poisson regression (log transformation):

log(Purchases) = β0 + β1Visits (77)

Here, eβ1 represents the multiplicative change in purchases per additional visit.
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24.5 Continuous Variables (Interval and Ratio)

Example: Predicting Blood Pressure Based on Age

BP = β0 + β1Age (78)

Interpretation: If β1 = 1.2, every one-year increase in age is associated with a 1.2 mmHg increase in
blood pressure.

24.6 Interaction Terms

When the effect of one variable depends on another variable, an interaction term is included.
Example: Predicting Salary Based on Education and Experience

Salary = β0 + β1Education + β2Experience + β3(Education× Experience) (79)

Interpretation: - β1 represents the effect of education when experience is zero. - β2 represents the
effect of experience when education is zero. - β3 represents how education modifies the effect of experience.

24.7 Comprehensive Example: Interpreting Regression Coefficients in a Real-
istic Model

To demonstrate coefficient interpretation across different variable types, consider a multiple regression model
predicting annual salary ($Y) based on the following factors:

• X1: Years of experience (continuous, ratio).

• X2: Education level (categorical, ordinal: Bachelor’s, Master’s, PhD).

• X3: Gender (binary: 1 for Male, 0 for Female).

• X4: Industry (categorical, nominal: Tech, Finance, Education with Education as the reference).

• X5: An interaction term between experience and education.

The estimated regression equation is:

Salary = 35, 000+2, 500X1+8, 000DMaster’s+15, 000DPhD+5, 000X3+12, 000DTech+10, 000DFinance+500(X1×DPhD)+ϵ
(80)

Interpretation of Coefficients:

• Intercept (35,000): The baseline predicted salary for a female (X3 = 0) with a Bachelor’s degree
(DMaster’s = 0, DPhD = 0) working in the Education industry (DTech = 0, DFinance = 0) and zero years
of experience (X1 = 0).

• Experience (X1 = 2, 500): Each additional year of experience increases salary by $2,500, assuming
no interaction effect.

• Education Level:

– β2 = 8, 000 (Master’s Degree): Holding all else constant, individuals with a Master’s degree earn
$8,000 more than those with a Bachelor’s.

– β3 = 15, 000 (PhD): Holding all else constant, individuals with a PhD earn $15,000 more than
those with a Bachelor’s.

• Gender (X3 = 5, 000): Males (X3 = 1) earn $5,000 more than females (X3 = 0), holding all other
variables constant.
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• Industry Type:

– β5 = 12, 000 (Tech Industry): Working in Tech increases salary by $12,000 compared to Education.

– β6 = 10, 000 (Finance Industry): Working in Finance increases salary by $10,000 compared to
Education.

• Interaction Effect (β7 = 500): The interaction term modifies the effect of experience for PhD holders.
A PhD holder earns an additional $500 per year of experience, meaning their experience-based salary
increase is:

(2, 500 + 500) = 3, 000 per year. (81)

Example Calculation: Consider a male employee (X3 = 1) with a PhD (DPhD = 1, DMaster’s = 0),
working in Tech (DTech = 1, DFinance = 0), with 10 years of experience (X1 = 10).

Predicted Salary = 35, 000 + (2, 500× 10) + (15, 000× 1) + (5, 000× 1) + (12, 000× 1) + (500× 10× 1)

= 35, 000 + 25, 000 + 15, 000 + 5, 000 + 12, 000 + 5, 000

= 97, 000.

Final Interpretation:

• The base salary (without experience or additional factors) is $35,000.

• This employee gains $2,500 per year of experience plus an extra $500 due to holding a PhD.

• His PhD degree gives him an additional $15,000.

• Being male adds $5,000 to his salary.

• Working in Tech increases his salary by $12,000.

• The final predicted salary is $97,000.

This example illustrates how different types of variables (binary, categorical, discrete, and continuous)
and interaction terms influence salary prediction in multiple linear regression.

24.8 Conclusion

Interpreting regression coefficients correctly depends on:

• The type of independent variable.

• Whether it is transformed (log, interaction).

• The reference category (for categorical variables).

Proper interpretation ensures meaningful insights from regression analysis.
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25 Robust Standard Errors

Robust Standard Errors (RSEs) are adjustments to the standard errors of regression coefficients that
provide valid statistical inference when classical assumptions (e.g., homoscedasticity and independence) are
violated. They are particularly useful in the presence of heteroscedasticity or autocorrelation.

25.1 Why Use Robust Standard Errors?

In Ordinary Least Squares (OLS) regression, standard errors are computed under the assumption of ho-
moscedastic residuals (constant variance):

Var(β̂) = σ2(XTX)−1. (82)

When heteroscedasticity is present, standard errors are incorrectly estimated, leading to unreliable hy-
pothesis testing. Robust standard errors correct for this issue by adjusting the variance-covariance matrix.

25.2 Types of Robust Standard Errors

25.2.1 White-Huber Robust Standard Errors

White’s (or Huber-White) standard errors correct for heteroscedasticity in cross-sectional data. The robust
variance-covariance matrix is:

V̂ (β̂) = (XTX)−1

(
n∑

i=1

e2ixix
T
i

)
(XTX)−1. (83)

Interpretation: - Ensures valid statistical inference when heteroscedasticity is present. - Does not
assume homoscedastic errors.

25.2.2 Clustered Standard Errors

Clustered standard errors adjust for within-group correlation, commonly used in panel data or hierarchical
datasets where residuals may be correlated within clusters (e.g., individuals in the same company).

V̂ (β̂) = (XTX)−1

(
C∑

c=1

XT
c êcê

T
c Xc

)
(XTX)−1. (84)

Interpretation: - Accounts for correlation within clusters. - Recommended for repeated observations
on the same unit (e.g., firms, states).

25.2.3 Heteroscedasticity and Autocorrelation Consistent (HAC) Standard Errors

Also known as Newey-West standard errors, these are used when errors exhibit both heteroscedasticity and
autocorrelation (common in time-series data).

V̂ (β̂) = (XTX)−1

 T∑
t=1

ê2txtx
T
t +

L∑
j=1

wj

T∑
t=j+1

êtêt−jxtx
T
t−j

 (XTX)−1. (85)

where wj are kernel weights.
Interpretation: - Corrects for heteroscedasticity and serial correlation in time-series data. - Commonly

used in financial and macroeconomic studies.

25.3 When to Use Robust Standard Errors

• Use White-Huber standard errors when residual variance is not constant across observations.

• Use clustered standard errors when data are grouped (e.g., firm-level, state-level).

• Use Newey-West standard errors when errors exhibit autocorrelation, typically in time-series data.
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25.4 Example: Impact of Education and Experience on Salary

A researcher estimates the effect of education and experience on salary:

Salary = β0 + β1Education + β2Experience + ϵ. (86)

After running an OLS regression, they suspect heteroscedasticity. To ensure valid inference, they compute
robust standard errors:

Variable OLS Standard Error Robust Standard Error
Education 1.5 2.2
Experience 0.8 1.3

Table 12: Comparison of Standard Errors

Interpretation: - The robust standard errors are larger than the OLS standard errors, suggesting
heteroscedasticity was present. - Using robust standard errors avoids overconfident conclusions.

25.5 Conclusion

Robust standard errors are essential when OLS assumptions are violated. Choosing the right type depends
on the data structure:

• White-Huber for cross-sectional heteroscedasticity.

• Clustered for grouped data.

• HAC (Newey-West) for time-series autocorrelation.

By correctly specifying robust standard errors, researchers ensure valid hypothesis testing and improve model
reliability.
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26 Model Fit, Diagnostics, and Selection

Assessing the validity and reliability of a regression model involves evaluating goodness-of-fit, checking diag-
nostic assumptions, and using model selection criteria. This section covers essential methods for evaluating
regression models.

26.1 Residual Analysis

Residuals measure the difference between the observed and predicted values:

ei = Yi − Ŷi. (87)

Why Residuals Matter:

• Residuals should be randomly distributed with a mean of zero.

• Systematic patterns indicate misspecification (e.g., omitted variables, incorrect functional form).

• Large residuals may suggest influential observations or outliers.

26.2 Goodness-of-Fit Metrics

26.2.1 R-Squared (R2) and Adjusted R2

Definition: R2 measures the proportion of variance in Y explained by the independent variables.

R2 = 1− SSR

SST
, (88)

where:

• SSR =
∑

(Yi − Ŷi)
2 (Residual Sum of Squares).

• SST =
∑

(Yi − Ȳ )2 (Total Sum of Squares).

Adjusted R2: Adjusted R2 accounts for the number of predictors, preventing overestimation of fit:

R2
adj = 1−

(
(1−R2)(n− 1)

n− p− 1

)
, (89)

where p is the number of predictors and n is the sample size.
Interpretation: - R2 = 0.8 means the model explains 80% of the variance in Y . - Adjusted R2 is

preferred when comparing models with different numbers of predictors.

26.2.2 Pseudo-R2 for Generalized Linear Models (GLMs)

For non-linear models (e.g., logistic, Poisson regression), traditional R2 is not applicable. Instead, Pseudo-R2

provides an alternative measure:

• McFadden’s Pseudo-R2:

R2
McF = 1− logLmodel

logLnull
. (90)

• Cox-Snell Pseudo-R2:

R2
CS = 1− exp

(
2(logLnull − logLmodel)

n

)
. (91)

Interpretation:

• Used in logistic and Poisson regression models.

• Higher values indicate better fit, but interpretation differs from traditional R2.
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26.3 Model Significance and Error Metrics

26.3.1 F-Test for Overall Model Significance

Definition: The F-test checks whether at least one predictor significantly explains Y .

F =
(SST − SSR)/p

SSR/(n− p− 1)
. (92)

Hypotheses:

• H0 : β1 = β2 = ... = βp = 0 (No predictor is significant).

• Ha : At least one βj ̸= 0.

Interpretation:

• A significant F-test (p < 0.05) suggests the model is useful.

• The test does not indicate which predictors are significant—this requires individual t-tests.

26.3.2 Root Mean Squared Error (RMSE)

Definition: RMSE measures the average prediction error:

RMSE =

√√√√ 1

n

n∑
i=1

(Yi − Ŷi)2. (93)

Interpretation:

• Lower RMSE indicates better predictive accuracy.

• Best used for comparing models on the same scale.

26.3.3 Residual Standard Error (RSE)

Definition: RSE estimates the standard deviation of residuals.

RSE =

√
SSR

n− p− 1
. (94)

Interpretation:

• Measures how much actual values deviate from model predictions.

• Smaller RSE suggests better model fit.

26.4 Model Selection Criteria

26.4.1 Akaike Information Criterion (AIC)

Definition: AIC balances model fit and complexity.

AIC = −2 logL+ 2p. (95)

Interpretation:

• Lower AIC suggests a better model.

• Penalizes excessive parameters to avoid overfitting.
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26.4.2 Bayesian Information Criterion (BIC)

Definition: BIC introduces a stronger penalty for model complexity.

BIC = −2 logL+ p log n. (96)

Interpretation:

• Similar to AIC but penalizes large models more heavily.

• Lower BIC indicates a better model.

26.4.3 Log-Likelihood

Definition: Log-likelihood measures how well the model explains the observed data.

logL =

n∑
i=1

logP (Yi|Xi). (97)

Interpretation:

• Higher log-likelihood values indicate better fit.

• Used in likelihood ratio tests for nested models.

26.5 Conclusion

Model evaluation requires multiple criteria:

• Goodness-of-fit: Use R2, Adjusted R2, or Pseudo R2.

• Significance tests: Use the F-test to determine if predictors matter.

• Error metrics: RMSE and RSE measure prediction accuracy.

• Model selection: AIC, BIC, and log-likelihood help compare competing models.

A well-fitted model should explain a significant portion of variance while maintaining simplicity and
generalizability. When diagnostics indicate violations of assumptions, applying corrective measures such as
transformations, robust regression, or regularization (e.g., Ridge or Lasso) can improve model reliability.

51



27 Lasso and Ridge Regression

Regularization techniques such as Lasso and Ridge Regression are used in linear models to prevent over-
fitting by adding a penalty term to the loss function. These methods are especially useful when dealing
with high-dimensional datasets where traditional Ordinary Least Squares (OLS) regression may suffer from
multicollinearity or model complexity.

27.1 Lasso Regression (Least Absolute Shrinkage and Selection Operator)

27.1.1 Definition and Objective

Lasso regression is a form of penalized regression that performs both variable selection and shrinkage by
adding an L1-norm penalty to the sum of squared residuals.

Objective Function:

min
β

n∑
i=1

(Yi −Xiβ)
2 + λ

p∑
j=1

|βj | (98)

where:

•
∑

(Yi −Xiβ)
2 is the residual sum of squares (RSS).

• λ
∑

|βj | is the L1-norm penalty.

• λ controls the degree of regularization.

• If λ = 0, the model reduces to standard OLS regression.

• As λ increases, some coefficients βj shrink to exactly zero, effectively performing variable selection.

27.1.2 Interpretation of Coefficients

- Unlike OLS, Lasso sets some coefficients to exactly zero, removing irrelevant predictors. - Helps in identify-
ing the most important variables in the model. - Reduces overfitting by selecting only significant predictors.

27.1.3 Example: Predicting House Prices

Suppose we are modeling house prices using features such as square footage, number of bedrooms, location,
and age of the house:

Price = β0 + β1Size + β2Bedrooms + β3Location + β4Age + ϵ. (99)

Applying Lasso regression: - If β4 = 0, the model determines that house age does not contribute signifi-
cantly to predicting price. - If β2 is shrunk but nonzero, the number of bedrooms is somewhat informative
but less critical.

27.1.4 When to Use Lasso Regression

• When there are many predictors, and feature selection is needed.

• When you expect that some variables have no effect (sparse solutions).

• When multicollinearity exists (it selects only one correlated predictor).

—
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27.2 Ridge Regression (Tikhonov Regularization)

27.2.1 Definition and Objective

Ridge regression is another form of penalized regression that shrinks coefficients but does not set them to
zero. Instead, it adds an L2-norm penalty to the loss function, ensuring all coefficients remain small.

Objective Function:

min
β

n∑
i=1

(Yi −Xiβ)
2 + λ

p∑
j=1

β2
j . (100)

where:

•
∑

(Yi −Xiβ)
2 is the residual sum of squares (RSS).

• λ
∑

β2
j is the L2-norm penalty.

• Unlike Lasso, Ridge does not force coefficients to zero but instead shrinks them toward zero.

27.2.2 Interpretation of Coefficients

- Unlike Lasso, Ridge retains all variables but reduces their influence by shrinking coefficients. - Useful when
all predictors contribute to the response variable. - Prevents overfitting by reducing the model’s complexity.

27.2.3 Example: Predicting House Prices

Consider the same house price model:

Price = β0 + β1Size + β2Bedrooms + β3Location + β4Age + ϵ. (101)

Applying Ridge regression: - All coefficients are shrunk but remain nonzero. - If β4 is small but nonzero,
age still has some influence, albeit limited.

27.2.4 When to Use Ridge Regression

• When all predictors are expected to contribute.

• When multicollinearity exists (reduces variance in correlated predictors).

• When feature selection is not needed but regularization is required.

—

27.3 Comparison: Lasso vs. Ridge Regression

Aspect Lasso Regression Ridge Regression
Penalty Term L1-norm (

∑
|βj |) L2-norm (

∑
β2
j )

Feature Selection Yes (sets some coefficients to 0) No (shrinks coefficients but keeps all)
Effect on Multicollinearity Selects one variable among correlated ones Shrinks all correlated predictors

When to Use When sparsity is expected When all features contribute

Table 13: Comparison of Lasso and Ridge Regression
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27.4 Elastic Net: Combining Lasso and Ridge

Elastic Net combines the benefits of both Lasso and Ridge regression:

min
β

n∑
i=1

(Yi −Xiβ)
2 + λ1

p∑
j=1

|βj |+ λ2

p∑
j=1

β2
j . (102)

Benefits:

• Performs feature selection (like Lasso) but retains correlated predictors (like Ridge).

• Useful when predictors exhibit high collinearity.

27.5 Conclusion

Both Lasso and Ridge regression address overfitting and improve model generalization:

• Use Lasso when you expect only a few important predictors (sparse models).

• Use Ridge when all predictors are expected to contribute.

• Use Elastic Net when you need both regularization and feature selection.

Choosing the right method depends on the dataset’s structure, the presence of multicollinearity, and the
need for feature selection.
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28 Hierarchical Linear Models (HLM)

Hierarchical Linear Models (HLM), also known as Mixed Effects Models, account for grouped data struc-
tures where observations are nested within higher-level units. These models capture both within-group and
between-group variation, correcting for the dependency among observations.

28.1 Why Use Hierarchical Models?

Standard regression models assume independent observations, but many real-world datasets involve hierar-
chical structures, such as:

• Students nested within schools.

• Employees nested within companies.

• Repeated measures on the same individuals over time.

Ignoring this structure can lead to biased standard errors and incorrect inferences. HLM accounts for:

• Group-level effects: Different groups may have distinct intercepts and slopes.

• Within-group vs. between-group variation: Separates variations at different levels.

• Unobserved heterogeneity: Controls for latent factors at the group level.

28.2 Fixed Effects Model (FE)

Fixed Effects (FE) models control for unobserved group-specific characteristics by including a separate
intercept for each group. The assumption is that these characteristics are correlated with the independent
variables.

Model Equation:
Yit = αi + β1Xit + γt + ϵit (103)

where:

• αi represents the group-specific fixed effect (absorbing time-invariant differences).

• γt represents time-specific fixed effects (controlling for shocks affecting all groups).

• β1 captures the within-group effect of X on Y .

• ϵit is the idiosyncratic error term.

Interpretation:

• Estimates how changes in X affect Y within the same group over time.

• Eliminates between-group variation, making cross-group comparisons impossible.

• Time-invariant variables (e.g., industry type) cannot be estimated because they are absorbed into αi.

28.3 Random Effects Model (RE)

Random Effects (RE) models assume that group-specific effects (αi) are randomly distributed and uncorre-
lated with the independent variables.

Model Equation:
Yit = γ0 + β1Xit + ui + γt + ϵit (104)

where:

• ui ∼ N(0, σ2
u) represents unobserved group-level effects.
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• γt represents time-specific effects.

• β1 captures both within-group and between-group variation.

Interpretation:

• Estimates both within-group and between-group effects.

• Assumes that ui is uncorrelated with Xit; if this assumption is violated, the model is biased.

• Allows estimation of time-invariant variables.

28.4 Fixed vs. Random Effects: The Hausman Test

The Hausman Test helps determine whether a Fixed Effects or Random Effects model is appropriate.
Hypotheses:

H0 : E[ui|Xit] = 0 (Random Effects is valid) (105)

Ha : E[ui|Xit] ̸= 0 (Fixed Effects is required) (106)

Decision Rule:

• If p < 0.05, reject H0 → Use Fixed Effects.

• If p > 0.05, fail to reject H0 → Random Effects can be used.

28.5 Diagnostics for Panel Data Models

28.5.1 Pesaran CD Test (Cross-Sectional Dependence)

Residuals across different groups may be correlated due to shared external factors. The Pesaran CD test
detects this.

Test Statistic:

CD =
1

N(N − 1)

∑
i

∑
j>i

ρ̂ij . (107)

Decision Rule:

• If CD is significantly different from 0, cross-sectional dependence exists.

• Solutions include spatial models or Driscoll-Kraay standard errors.

28.5.2 Breusch-Pagan LM Test (Random Effects vs. OLS)

Determines whether random effects are needed.
Hypotheses:

H0 : σ2
u = 0 (No random effects) (108)

Ha : σ2
u > 0 (Use Random Effects) (109)

28.5.3 Intraclass Correlation Coefficient (ICC)

Measures how much of the total variance is explained by group-level differences:

ICC =
σ2
u

σ2
u + σ2

. (110)

Interpretation:

• If ICC > 0.05, substantial between-group variation → Use hierarchical models.

• If ICC ≈ 0, little group-level variation → OLS may be sufficient.
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Aspect Fixed Effects (FE) Random Effects (RE)
Unobserved Group Effects Controlled for, treated as fixed Modeled as random

Estimation Uses only within-group variation Uses both within- and between-group variation
Time-Invariant Variables Cannot be estimated Can be estimated

Assumption on Group Effects Correlated with Xit Uncorrelated with Xit

Efficiency Less efficient, loses degrees of freedom More efficient if assumptions hold

Table 14: Comparison of Fixed Effects and Random Effects Models

28.6 Comparison of Fixed Effects and Random Effects

28.7 Conclusion

• Use Fixed Effects when unobserved group characteristics are correlated with independent variables.

• Use Random Effects when group differences are assumed to be random and uncorrelated with the
independent variables.

• Perform the Hausman Test to determine the correct model empirically.

Hierarchical models improve inference by properly accounting for structured data dependencies, ensuring
robust and reliable statistical analysis.
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29 Generalized Linear Models (GLMs)

Generalized Linear Models (GLMs) extend traditional Linear Models (LMs) to allow for non-normal response
variables. Unlike ordinary least squares (OLS) regression, which assumes normally distributed errors and
a linear relationship between predictors and the dependent variable, GLMs enable modeling with various
distributions and link functions.

29.1 Why Use GLMs? How Are They Different from Linear Models?

Traditional Linear Models (LMs) assume:

• The dependent variable Y is continuous and normally distributed.

• A linear relationship between the predictors X and the mean of Y .

• Homoscedasticity (constant variance of errors).

• Additive effects of predictors.

However, in many real-world scenarios, these assumptions do not hold. Examples include:

• Binary outcomes (e.g., disease presence: Yes/No).

• Count data (e.g., number of customer complaints).

• Skewed or bounded outcomes (e.g., proportions or survival times).

GLMs solve these issues by:

• Allowing the dependent variable Y to follow different probability distributions (e.g., binomial, Poisson,
gamma).

• Transforming the relationship between X and Y via a link function.

• Using Maximum Likelihood Estimation (MLE) instead of OLS to estimate coefficients.

29.2 General Structure of a GLM

A Generalized Linear Model consists of three components:

• Random Component: Specifies the distribution of the response variable Y .

• Systematic Component: A linear predictor η, which is a function of independent variables X.

• Link Function: Transforms the expected value of Y to fit the linear predictor.

Mathematically, a GLM is represented as:

g(E[Y ]) = η = Xβ, (111)

where:

• g(·) is the link function.

• E[Y ] is the expected value (mean) of Y .

• Xβ is the linear predictor.
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Characteristic Linear Models (LMs) vs. GLMs
Distribution of Y LMs assume normality; GLMs allow various distributions

Relationship with X LMs assume a linear relationship; GLMs use link functions
Estimation Method LMs use OLS; GLMs use Maximum Likelihood Estimation (MLE)
Error Structure LMs assume constant variance (homoscedasticity); GLMs allow non-constant variance

Table 15: Comparison of LMs and GLMs

29.3 Comparison: GLMs vs. Linear Models

29.4 When to Use GLMs

GLMs should be used when:

• The dependent variable is binary, count-based, or skewed.

• Variance increases with the mean (heteroscedasticity).

• The relationship between predictors and outcome is non-linear.

• Probabilities or rates need to be modeled (e.g., logistic regression for classification).

29.5 Conclusion

Generalized Linear Models extend traditional regression by accommodating different types of response vari-
ables. The choice of model depends on the nature of Y :

• Use Linear Models when Y is continuous and normally distributed.

• Use Logistic Regression for binary outcomes.

• Use Poisson Regression for count data.

• Use Gamma Regression for positive, skewed data.

GLMs provide a flexible framework for modeling diverse data types, ensuring more accurate and reliable
statistical analysis.
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30 Logistic Regression

30.1 Introduction

Logistic regression is a statistical method for modeling binary outcomes (Y ∈ {0, 1}) based on predictor
variables. It transforms the response variable into probabilities using the logistic (sigmoid) function.

30.2 Mathematical Formulation

Unlike linear regression, logistic regression models the probability that Y = 1 using the logit function:

P (Y = 1|X) =
1

1 + e−(β0+β1X1+β2X2+...+βpXp)
(112)

Taking the log-odds transformation:

log

(
P (Y = 1)

1− P (Y = 1)

)
= β0 + β1X1 + β2X2 + ...+ βpXp. (113)

where:

• P (Y = 1) is the probability of success.

• β0 is the intercept.

• β1, β2, ..., βp are regression coefficients.

• X1, X2, ..., Xp are predictor variables.

30.3 Interpretation of Coefficients

Each coefficient βj represents the log-odds change in Y per unit change in Xj . The exponentiation of
coefficients provides the odds ratio:

Odds Ratio = eβj . (114)

Example: Suppose a logistic regression model predicts whether a customer buys a product (Y = 1)
based on advertising spending (X):

log

(
P (Y = 1)

1− P (Y = 1)

)
= −2 + 0.05X. (115)

- e0.05 ≈ 1.051 means that for each additional dollar spent, the odds of purchase increase by 5.1

30.4 Model Fitting: Maximum Likelihood Estimation

Unlike OLS in linear regression, logistic regression estimates coefficients using Maximum Likelihood Estima-
tion (MLE) by maximizing the likelihood function:

L(β) =

n∏
i=1

P (Yi|Xi)
Yi(1− P (Yi|Xi))

(1−Yi). (116)

The log-likelihood is:

logL(β) =

n∑
i=1

Yi logP (Yi|Xi) + (1− Yi) log(1− P (Yi|Xi)). (117)

MLE finds the coefficients β that maximize logL(β).
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30.5 Model Performance Metrics

Since logistic regression does not use R2, alternative measures assess model fit:

30.5.1 Pseudo-R2

• McFadden’s R2:

R2
McF = 1− logLmodel

logLnull
. (118)

- Higher values indicate better fit, but not directly comparable to traditional R2.

• Likelihood Ratio Test (LRT):
χ2 = −2(logLnull − logLmodel). (119)

- A significant p-value suggests at least one predictor is useful.

30.5.2 Classification Accuracy

• Confusion Matrix:

Predicted 0 Predicted 1
Actual 0 True Negative (TN) False Positive (FP)
Actual 1 False Negative (FN) True Positive (TP)

• Accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN
. (120)

• Precision (Positive Predictive Value):

Precision =
TP

TP + FP
. (121)

- Measures how many predicted positives are actual positives.

• Recall (Sensitivity, True Positive Rate):

Recall =
TP

TP + FN
. (122)

- Measures how many actual positives were correctly identified.

• F1-Score:

F1 = 2× Precision× Recall

Precision + Recall
. (123)

- Balances precision and recall.

30.6 Diagnostics and Assumptions

30.6.1 Multicollinearity (VIF)

Variance Inflation Factor (VIF) detects multicollinearity:

V IFj =
1

1−R2
j

. (124)

- If V IF > 5, multicollinearity may be problematic.
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30.6.2 Linearity in Log-Odds

The relationship between predictors and the log-odds should be linear. Box-Tidwell Test checks this as-
sumption.

30.6.3 Hosmer-Lemeshow Test

Tests goodness-of-fit:

H0 : Model fits well. (125)

- A large p-value suggests a good fit.

30.7 ROC Curve and AUC

30.7.1 Receiver Operating Characteristic (ROC) Curve

The ROC curve plots:
- True Positive Rate (Recall) vs. False Positive Rate.

30.7.2 Area Under the Curve (AUC)

Measures overall model discrimination:

AUC =

∫ 1

0

TPR(x)dx. (126)

Interpretation:

• AUC = 0.5 → No better than random guessing.

• AUC > 0.7 → Acceptable model.

• AUC > 0.9 → Excellent model.

30.8 Conclusion

Logistic regression is a powerful tool for binary classification. Model performance should be evaluated using:

• Goodness-of-fit: Pseudo-R2, likelihood ratio test.

• Classification accuracy: Precision, recall, F1-score.

• Model diagnostics: VIF, Hosmer-Lemeshow test.

• Predictive ability: ROC-AUC.

Logistic regression serves as a foundation for advanced classification models such as regularized logistic
regression (Lasso/Ridge), decision trees, and neural networks.
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